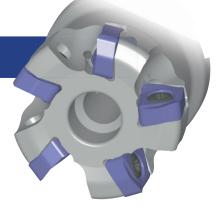


Tungaloy Report No. 403-US

TXN / EXN type

New-generation of high feed cutters offering incredible productivity


This new generation of su cutter has now been exter

Two new sizes of insert now allow a wider to

Innovations behind super high productivity

Excellent chip evacuation

Holes for air blast to reduce edge chipping caused by re-cutting chips

Remarkable chip control

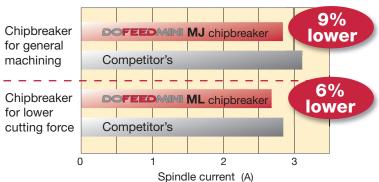
Large inclination improves chip flow

curling with an optimum length

Consistent

Cutter	: TXN06R200U075A05	
Insert	: LNMU06X5ZER-MJ	
Grade	: AH725	
Work material	: Carbon steels (1055)	
Cutting speed	: <i>V</i> c = 590 sfm	
Feed per tooth	n: fz = .070 ipt	
Depth of cut	: ap =.039"	
Coolant	: Dry	
Machine	: Vertical M/C, BT50	

High density inserts for improved productivity


	Tool dia.	No. of inser	No. of inserts					
Tool diameter	øDc (in)	DOFEED SERIES	Competitor	with competitor				
EXN03	ø.750	4	3	1.3 times				
EANUS	ø1.000	5	4	1.3 times				
TXN06	ø2.000	5	4	1.3 times				
EXN06	ø3.000	7	5	1.4 times				

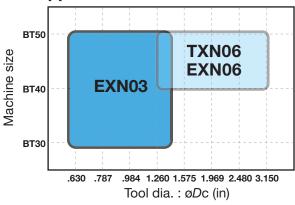
uper high feed Ided !

ool diameter range

Reduced chattering with low cutting forces

- Negative type insert with low cutting forces
- Comparison of spindle load

Suitable for any machine size


EXN03	 Highly efficient milling tools for mid to small range machines Tool dia.: øDc = .625 ~ 1.250" Max. depth of cut: Max. ap = .039"
TXN06 EXN06	 Highly efficient milling tools for large to mid range machines Tool dia.: <i>øD</i>c = 1.250 ~ 3.000" Max. depth of cut: Max. <i>a</i>p = .059"

Cutter	: EXN03R100U0100-05
	(ø1.000", z = 5)
Insert	: LNMU0303ZER-MJ / ML
Grade	: AH725
Work material	: Carbon steels (1055)
Cutting speed	: <i>V</i> c = 820 sfm
Feed per tooth	: fz = .020 ipt (1 insert)
Depth of cut	: ap = .020"
Width of cut	: ae = 1.000" (Slot milling)
Coolant	: Dry
Machine	: Vertical M/C, BT40

0.1.

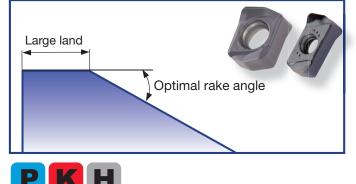
117

Applicable area

Scaled up insert

.472" LNMU06 type

Economical insert with 4 cutting edges!



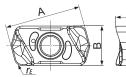
Chipbreaker

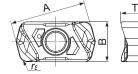
MJ Chipbreaker for general machining

- Steel Cast iron Hard
- · Excellent combination of sharpness and strength
- · Ideal for machining steels, cast iron and hardened steel

Grades

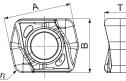
Special Surface Technology **PREMIUMTEC**

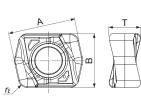

AH725



- Newly developed coating layer with a unique substrate
- · Well balanced wear and chipping resistance
- \cdot Suitable for steels and cast irons

LNMU03 type





MJ (for general purpose)

ML (for low cutting force)

LNMU06 type

MJ (for general purpose)

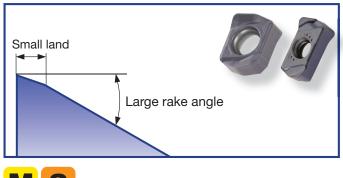
ML (for low cutting force)

Cat. No.	Accuracy	Honing		Grades		Dimensions (in)				
Oat. NO.	Accuracy	Tioning	AH725	AH120	AH130	А	В	Т	۳٤	
LNMU0303ZER-MJ	М	with	•		•	.456	.236	.169	.047	
LNMU0303ZER-ML	М	with	•		•	.450				
LNMU06X5ZER-MJ	М	with	•	•	•	.591	.472	.276	.079	
LNMU06X5ZER-ML	М	with	•	•	•	.591	.472			

AH130

Steel

Newly developed substrate


· Excellent balance between

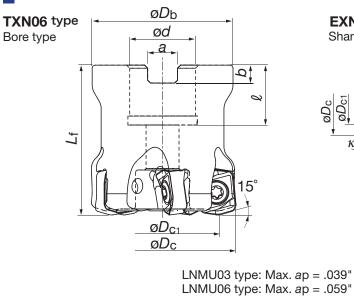
hardness and toughness

· Suitable for stainless steels

Stainless

ML Chipbreaker for lower cutting forces

· Exceptional sharpness


Stainless Superallovs

- · Suitable for cutting stainless steel and titanium alloy
- Reduces chattering when cutting with low rigidity setups



- Tough substrate with high reliability
- · Outstanding wear resistance
- · Ideal grade for cast iron milling

Cutter

EXN03, EXN06 type Shank type

Parts

C	Descriptions		Parts Cat. No.							
Ар	plicable cutter	TXN06R	EXN03R	EXN06R						
Cla	amping screw	CSPB-5	CSPB-2.5	CSPB-5						
Nrench	Bit	BLD IP20/S7	IP-8D	IP-20D						
Wre	Handle	H-TBS	1F-8D	IP-20D						

Bore type

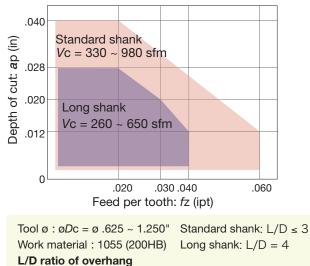
Cat. No.	Stook	L No. of Dimensions (in)						Weight	Air hole	Incort				
Cat. NO.	Stock	Inserts	øDc	ØDc1	ø D b	ød	l	Lf	b	а	(lb)	AII HOIE	Insert	
TXN06R200U075A05		5	2.000	1.513	1.850	.750	.750	2.000	.197	.315	.88	with	LNMU06X5ZER-M*	
TXN06R300U100A07		7	3.000	2.512	2.835	1.000	1.024	2.500	.236	.374	3.31	VVILII		

Shank type

Type	Cat. No.	Stock	No. of			Dimensi	ons (mm)	1		Weight	Air hole	Insert	
Ty	041.110.	OLOCK	Inserts	øDс	øDs	øDc1	L	<i>L</i> f	ls	(lb)		moert	
	EXN03R062U0062-02		2	.625	.625	.374	4.000	1.250	2.750	.44			
	EXN03R068U0062-02		2	.688	.625	.433	4.000	1.250	2.750	.44			
	EXN03R075U0075-03		3	.750	.750	.496	5.000	2.000	3.000	.66			
ard	EXN03R087U0075-03		3	.875	.750	.634	5.000	2.000	3.000	.66	with	LNMU0303ZER-M*	
Stand	EXN03R100U0100-05		5	1.000	1.000	.756	5.500	2.500	3.000	1.10			
Sta	EXN03R112U0100-05		5	1.125	1.000	.882	5.500	2.500	3.000	1.10			
	EXN03R125U0125-06		6	1.250	1.250	1.008	6.000	3.000	3.000	2.43			
	EXN06R125U100W02		2	1.250	1.250	0.766	5.000	3.000	2.000	1.76	with	LNMU06X5ZER-M*	
	EXN06R150U125W03		3	1.500	1.250	1.014	6.000	3.500	2.500	1.98	vvicii		
	EXN03R062U0062-02L		2	.625	.625	.374	6.000	2.000	4.000	.44			
	EXN03R068U0062-02L		2	.688	.625	.433	6.000	1.000	5.000	.44			
	EXN03R075U0075-03L		3	.750	.750	.496	6.500	3.500	3.000	.66			
D	EXN03R087U0075-03L		3	.875	.750	.634	6.500	1.250	5.250	.88	with	LNMU0303ZER-M*	
juo	EXN03R100U0100-04L		4	1.000	1.000	.756	7.000	4.000	3.000	1.32	VVICII		
	EXN03R112U0100-04L		4	1.125	1.000	.882	7.000	1.500	5.500	1.54			
	EXN03R125U0125-05L		5	1.250	1.250	1.008	8.000	5.000	3.000	2.43			
	EXN06R125U100-02L		2	1.250	1.250	0.766	8.000	5.000	3.000	2.43	with	LNMU06X5ZER-M*	
	EXN06R150U125-03L	•	3	1.500	1.250	1.014	10.000	2.000	8.000	2.87	VVILII		

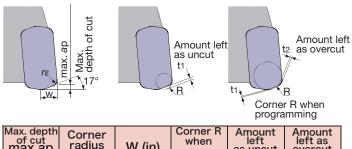
Standard cutting conditions EXN03 type

							Feed pe	er tooth: fz (ipt)		
Work	material	Hardness	Priority	Grades	Chip- breaker	Cutting speed Vc (sfm)	Tool dia.: ø.625~ ø.875	Tool dia.: ø1.0 ~ ø1.25	Plunging	
		~ 300HB	First choice	AH725	MJ		.020050	.020060	.004	
	n steels 1055 etc.		for low cutting force	AH725	ML	330 - 980	.020030	.020040		
			for impact resistance	AH130	MJ		.020050	.020060		
			First choice	AH725	MJ		.020050	.020060		
Alloy steels 4140, SCr415 etc.		~ 300HB	for low cutting force	AH725	ML	330 - 660	.020030	.020040	.004	
			for impact resistance	AH130	MJ		.020050	.020060		
Preharde	ened steels	30 ~ 40HRC	-	AH725	ML	330 - 660	.020030	.020040	.004	
Stainle	ss steels	~ 200HB	First choice	AH130	ML	330 - 490	.012020	.012030	.003	
304, 3	316 etc.	~ 200HB	for impact resistance	AH130	MJ	330 - 490	.012031	.012031	.003	
	ast irons No45B etc.	150 ~ 250HB	-	AH120	MJ	330 - 980	.020050	.020060	.004	
	cast irons -18 etc.	150 ~ 250HB	-	AH120	MJ	330 - 660	.020050	.020060	.004	
	Titanium alloy Ti-6AI-4V etc.		-	AH725	ML	100 - 200	.012020	.012030	.003	
Hardened	H13 etc.	40 ~ 50HRC		AH725	MJ	260 - 430	.004008	.004012	.002	
steels	D2 etc.	50 ~ 60HRC	-	АП/2Э	IVIJ	160 - 230	.001002	.001003	.001	


When chips stay in the cutting zone during slotting or pocketing, use air blast to remove chips from the work area.

Tool overhang length must be as short as possible to avoid chatter. When the tool overhang length is long, decrease the number of revolutions and feed.

Cautionary points in use

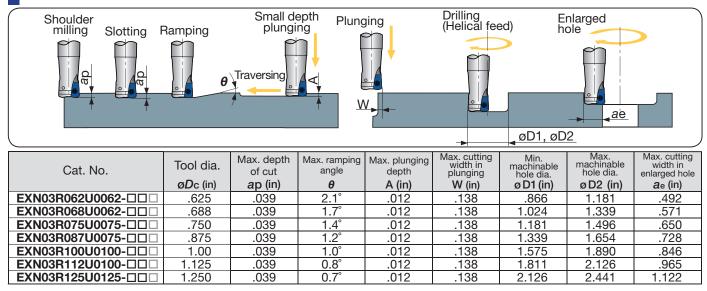

The use of a standard or long shank

When using a long shank, please lower the cutting conditions (Vc, fz, ap) to 70% of the maximum conditions for the standard shank.

Tool geometry on programming

When programming for CAM, the tool should be considered as a radius cutters. Usually, the corner radius should be set as R = .060". If a larger radius is used, overcutting will occur. The following table shows the amount left as uncut (t₁) and overcut (t₂).

of cut max ap (in)	radius radius	W (in)	when program- ming	left as uncut t1 (in)	left as overcut t2 (in)
			.039	.024	-
.039	.047	.118	.060	.020	-
.039	.047	.110	.079	.010	.003
			.098	.006	.010


Each value in table is calculated theoretically at the maximum condition.

	Tool dia	a.: øDc (ii	n). Numb	er of revo	olutions:	<i>n</i> (rom). F	- eed spe	ed: Vf (ip	om). Max	. depth o	f cut: ap	= .039"	
ø.625,		ø.688,		ø.750.		ø.875.		ø1.000		ø1.125		ø1.250	. z = 6
n	Vf	n	Vf	n	Vf	n	Vf	n	Vf	n	Vf	n	Vf
4030	242	3660	220	3360	302	2880	259	2520	504	2240	448	2020	485
		Vc =	= 660 sfm	, <i>f</i> z = .030) ipt				Vc =	= 660 sfm	, <i>f</i> z = .040) ipt	
4030	202	3660	183	3360	252	2880	216	2520	378	2240	336	2020	364
<i>V</i> c = 660 sfm			= 660 sfm	, <i>f</i> z = .025	5 ipt				Vc =	= 660 sfm	, <i>f</i> z = .030) ipt	
4030	242	3660	220	3360	302	2880	259	2520	504	2240	448	2020	485
		Vc =	= 660 sfm	, <i>f</i> z = .030) ipt				Vc =	= 660 sfm	, <i>f</i> z = .040) ipt	
2990	179	2720	163	2500	227	2140	193	1870	374	1660	332	1500	360
<i>V</i> c = 490 sfm, <i>f</i> z = .030 ipt							Vc =	= 490 sfm	, <i>f</i> z = .040) ipt			
2990 150 2720 136 2500					189	2140	161	1870	281	1660	249	1500	270
<i>V</i> c = 490 sfm, <i>t</i>				, fz = .02	5 ipt				Vc =	= 490 sfm	, <i>f</i> z = .030) ipt	
2990	179	2720	163	2500	227	2140	193	1870	374	1660	332	1500	360
<i>V</i> c = 490 sfm, <i>f</i> z = .030 ipt							<i>V</i> c = 490 sfm, <i>f</i> z = .040 ipt						
2990	150	2720	136	2500	189	2140	161	1870	281	1660	249	1500	270
		Vc =	= 490 sfm	, <i>f</i> z = .025	5 ipt				Vc =	= 490 sfm	, <i>f</i> z = .030) ipt	
2440	78	2220	71	2040	98	1750	84	1530	153	1360	136	1220	146
		Vc =	= 400 sfm	, <i>f</i> z = .016	6 ipt	-		<i>V</i> c = 400 sfm, <i>f</i> z = .020ipt					
2440	98	2220	89	2040	122	1750	105	1530	168	1360	150	1220	161
		Vc =	= 400 sfm	, <i>f</i> z = .020) ipt				Vc =	= 400 sfm	, <i>f</i> z = .022	2 ipt	
4030	242	3660	220	3360	302	2880	259	2520	504	2240	448	2020	485
		Vc =	= 660 sfm	, <i>f</i> z = .030) ipt				Vc =	= 660 sfm	, <i>f</i> z = .040) ipt	
2990	179	2720	163	2500	225	2140	193	1870	374	1660	332	1500	360
		Vc =	= 490 sfm	, <i>f</i> z = .030) ipt				Vc =	= 490 sfm	, <i>f</i> z = .040) ipt	
920	29	830	27	760	36	650	31	570	57	510	51	460	55
			= 150 sfm								fz = .020		
2020	24	1830	24	1680	30	1440	26	1260	50	1120	45	1010	48
<i>V</i> c = 330 sfm, <i>f</i> z = .006 ipt								Vc =		fz = .008	3 ipt		
1220	4	1110	3	1020	5	870	4	760	8	680	7	610	7
		Vc =	200 sfm,	<i>f</i> z = .001	5 ipt				Vc =	= 200 sfm	fz = .002	2 ipt	

■ The above table shows the conditions for standard shank type cutters. When using long shank type cutters, the number of teeth may be different. In this case, the cutting conditions should be changed by referring to: "The usage of standard and long shanks" shown in page 6.

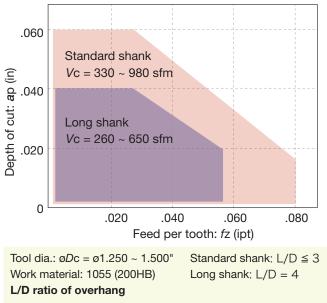
Cutting conditions are generally limited by the rigidity and power of the machine and the rigidity of the workpiece. When setting the conditions, start from half of the values of the standard cutting conditions and then increase the value gradually while making sure the machine is running normally.

Applications

Standard cutting conditions

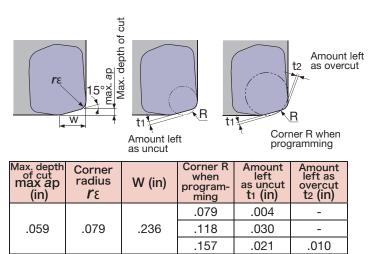
EXN06 / TXN06 type

		-				-	-		
Work	material	Hardness	Priority	Grades	Chip- breaker	Cutting speed Vc (sfm)	Feed per tooth fz (ipt)	Feed when plunging fz (ipt)	
Carria	n eteolo		first choice	AH725	MJ				
	n steels 055 etc.	~ 300HB	for wear resistance	AH120	MJ	330 - 980	.020059	.006	
1045, 1	055 etc.		for impact resistance	AH130	MJ				
Allov	steels		first choice	AH725	MJ				
	Cr415 etc.	~ 300HB	for wear resistance	AH120	MJ	330 - 660	.020059	.006	
+1+0, 00			for impact resistance	AH130	MJ				
Preharde	Prehardened steels		-	AH725	ML	330 - 660	.020039	.006	
	ss steels	~ 200HB	first choice	AH130	ML	330 - 490	.012028	.004	
304, 3	304, 316 etc.		for impact resistance	AH130	MJ	330 - 490	.012031	.004	
	Grey cast irons		first choice	AH120	MJ	330 - 980	.020059	.006	
No35B, N	lo45B etc.	150 ~ 250HB	for low cutting force	AH120	ML	330 - 980	.020039	.000	
Ductile o	cast irons	150 ~ 250HB	first choice	AH120	MJ	260 - 660	.020059	.006	
60-40-	-18 etc.	150 ~ 250115	for low cutting force	AH120	ML	200 - 000	.020039	.000	
Titanium alloy	(Ti-6AI-4V etc.)	~ 40HRC	-	AH725	ML	100 - 200	.012028	.003	
Hardened	H13 etc.	40 ~ 50HRC		AH725	MJ	260 - 430	.004012	.002	
steels	D2 etc.		-	AH725	MJ	160 - 230	.001003	.001	
N/hon ohing at	ov in the outting zo	no during old	ting or	Tool over	hang l <mark>e</mark> n	ath must he as a	short as nossible	to avoid	


When chips stay in the cutting zone during slotting or pocketing, use an air blast to remove chips from the work area.

Tool overhang length must be as short as possible to avoid chatter. When the tool overhang length is long, decrease the number of revolutions and feed.

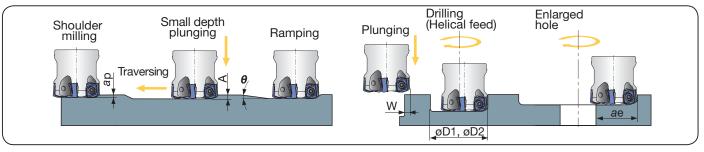
Cautionary points for use


The usage of a standard & long shank

When using a long shank, please lower the cutting conditions (Vc, fz, ap) to 70% of the maximum conditions for the standard shank.

Tool geometry on programming

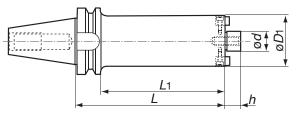
When programming for CAM, the tool should be considered as a radius cutters. Usually, the corner radius should be set as R = .118". If a larger radius is used, overcutting will occur. The following table shows the amount left as uncut (t₁) and overcut (t₂).


Each value in table is calculated theoretically at the maximum condition.

Tool dia.: øDc (in), Number of revolutions: n (rpm), Feed speed: Vf (ipm), Max. depth of cut: ap = .059"										
ø1.250", z = 2		ø1.50	0", z = 3	ø2.000"	, z = 5	ø3.000", z = 7				
n	Vf	n	Vf	п	Vf	п	Vf			
2,020	162	1,680	202	1,260	252	840	235			
			<i>V</i> c = 660 sfm	, <i>f</i> z = .040 ipt						
1,500	120	1,250	150	940	188	620	174			
			<i>V</i> c = 490 sfm	, <i>f</i> z = .040 ipt						
1,500	90	1,250	113	940	141	620	130			
Vc = 490 sfm, fz = .030 ipt										
1,220	49	1,020	61	760	76	510	71			
	Vc = 400 sfm, fz = .020 ipt									
1,220	59	1,020	73	760	91	510	86			
Vc = 400 sfm, fz = .024 ipt										
2,020	97	1,680	121	1,260	151	840	141			
Vc = 660 sfm, fz = .024 ipt										
2,020	121	1,680	151	1,260	189	840	176			
			<i>V</i> c = 660 sfm	, <i>f</i> z = .030 ipt						
1,500	72	1,250	90	940	113	620	104			
Vc = 490 sfm, fz = .040 ipt										
1,500	90	1,250	113	940	141	620	130			
			<i>V</i> c = 490 sfm	, <i>f</i> z = .030 ipt						
460	18	380	23	290	29	190	27			
			<i>V</i> c = 150 sfm	, <i>f</i> z = .020 ipt						
1,010	16	840	20	630	25	420	24			
			<i>V</i> c = 330 sfm	, fz = .008 ipt						
610	2	510	3	380	4	250	4			
			Vc = 200 sfm	, <i>f</i> z = .002 ipt						

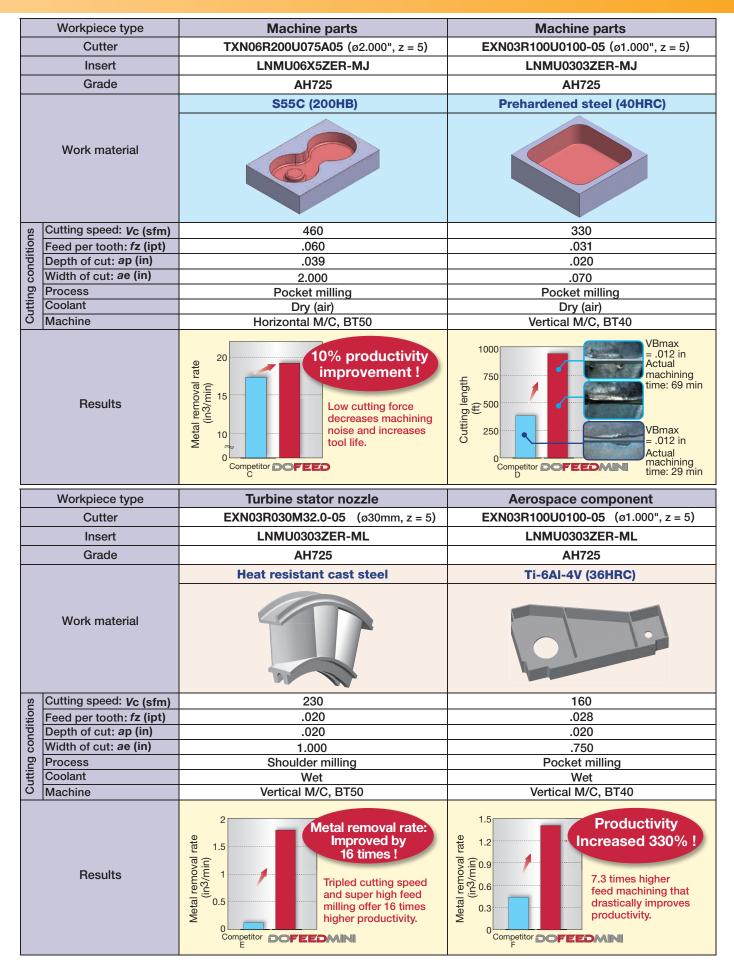
■ The above table shows the conditions for standard shank type cutters. When using long shank type cutters, the number of teeth may be different. In this case, the cutting conditions should be changed by referring to: "The usage of standard and long shanks" shown in page 8.

Cutting conditions are generally limited by the rigidity and power of the machine and the rigidity of the workpiece. When setting the conditions, start from half of the values of the standard cutting conditions and then increase the value gradually while making sure the machine is running normally.


Applications

Cat. No.	Tool dia. ø D c (in)	Max. depth of cut ap (in)	Max. ramping angle Ø	Max. plunging depth A (in)	Max. cutting width in plunging W (in)	Min. machinable hole dia. ø D1 (in)	Max. machinable hole dia. ø D2 (in)	Max. cutting width in enlarged hole a e (in)
TXN06R200U	ø2.000	.059	0.9	.020	.236	3.330	3.800	1.720
TXN06R300U	ø3.000	.059	0.6	.020	.236	5.330	5.800	2.720
EXN06R125U	ø1.250	.059	2.0	.020	.236	1.830	2.300	.970
EXN06R150U	ø1.500	.059	1.7	.020	.236	2.330	2.800	1.220

Arbors CAT50 SEM



%No through air hole.

			D					
Cat. No.	Stock	Dimensions (in)					Applicable TAC mills	
Cuintor		L	L1	øD1	ød	h		
CAT50 SEM 3/4X1.500		1.5	.750	1.772	.750	.669	- - TXN06R200U075A05	
CAT50 SEM 3/4X1.920X8.00		8	7.250	1.920	.750	.669		
CAT50 SEM 3/4X3.500		3.5	.750	1.772	.750	.669		
CAT50 SEM 3/4X5.500		5.5	4.750	2.362	.750	.669		
CAT50 SEM 1X2.000		2	1.250	2.165	1.000	.669		
CAT50 SEM 1X2.42X12.00		12	11.25	2.420	1.000	.669	TXN06R300U100A07	
CAT50 SEM 1X4.000		4	3.250	2.165	1.000	.669		
CAT50 SEM 1X6.000		6	5.250	2.165	1.000	.669		

Practical examples

Workpiece type		Mold for plastic products	Mold for pressing				
Cutter		TXN06R063M22.0E06 (ø63mm, z = 6)	TXN06R063M22.0E06 (ø63mm, z = 6)				
	Insert		LNMU06X5ZER-MJ				
	Grade	AH725					
	Grade		AH120				
		Prehardened steel (30HRC)	No.25 (150HB)				
	Work material						
su	Cutting speed: Vc (sfm)	660	660				
conditions	Feed per tooth: fz (ipt)	.050	.040				
ndi	Depth of cut: ap (in)	.031	.039				
	Width of cut: ae (in)	1.600	2.480				
Cutting	Process	Face milling, Pocket milling	Face milling				
lti	Coolant	Dry (air)	Dry (air)				
ō	Machine	Horizontal M/C, BT50	Special machine, BT50				
Results		Wetal Line and the second seco	Machining time improved by 140% ! The high wear resistance of the AH120 reduces load while its high density improves tool life.				

Tungaloy America, Inc.

3726 N Ventura Drive, Arlington Heights, IL 60004, U.S.A. Inside Sales: +1-888-554-8394 Technical Support: +1-888-554-8391 Fax: +1-888-554-8392

Tungaloy Canada

432 Elgin St. Unit 3, Brantford, Ontario N3S 7P7, Canada Phone: +1-519-758-5779 Fax: +1-519-758-5791

Tungaloy de Mexico S.A.

C Los Arellano 113, Parque Industrial Siglo XXI Aguascalientes, AGS, Mexico 20290 Phone:+52-449-929-5410 Fax:+52-449-929-5411

www.tungaloyamerica.com

Become a fan on facebook

Follow us on Twitter @tungaloy

Watch our videos on You Tube

Distributed by:			