

Tungaloy Report No.021-USA

TAC Drills / New TDX type

TUNGORILLTWISTED

Range of drills from $\emptyset 0.500" \sim 2.00"$ L/D = 2xD, 3xD, 4xD, 5xD

Highest Productivity with Maximum Performance!

Range extended with new "AH725" grade, for steels and stainless steels!

Excellent surface finish and stable chip evacuation with newly developed drill body!

Features

Range of drills from ø0.500" ~ 2.00" & L/D = 2xD, 3xD, 4xD, 5xD

1 Highly economic

Stable and efficient machining can be achieved by using four corners of the proven parallelogram shaped insert.

3 Applicable to various machining applications

Eight insert types can be applied to various machining applications and work materials on anything from lathes to machining centers.

Well-balanced rigid design = TDX concept

The drill body shape further enhances stable cutting. As a result, exceptional balance can be obtained and chatter can be limited.

Power

Up

Excellent chip

evacuation!

2

The new twisted coolant hole in the drill body increases fluid flow by 1.5 times.

Machine : Vertical machining center Oil pressure : 290psi

owei Up

Improved drilling durability!

Long tool life due to specialized drill body coating that is hardened to improve rigidity.

New TDX type drills machining comparisons

High quality surface finishes

Both high efficiency and high quality are obtained.

By dramatically increasing oil, improved chip evacuation, stability, and surface finish can be achieved when compared to conventional products.

Competitor A

Cutting fluid	: Water soluble type
Machine	: Vertical machining center
Drilling depth	1: 3D (Blind)
Feed	: <i>f</i> = 0.005" ipr
Cutting speed	: <i>V</i> c = 600 SFM
Drill	: ø0.875", L/D = 3xD
Workpiece	: 4140 SAE

Comparison of chip shape (the central and peripheral cutting edges)

Tungaloy's TDX enables excellent chip control in various work materials.

Wo mat	ork erial	4140 SAE	304 SS	400 SS	1055 SAE
Cut Spe Feed	ting eed I rate	Vc = 330 SFM f = .004 ipr	Vc = 500 SFM f = .005 ipr	Vc = 650 SFM f = .003 ipr	Vc = 650 SFM f = .008 ipr
type	Center	Good			
TDX	Peripheral		DS type	DS type	
etitor A	Center		Unstable	1 1 1	• • • • • •
Compe	Peripheral	•••••	r. 37 Ste	100 100 100 100 100 100 100 100 100 100	4447 0 9-0-0 0
etitor B	Center		*	*****	
Compe	Peripheral	****	·····································	A Contraction	696.
etitor C	Center		- je a m	* *******	
Compe	Peripheral	******	the state of the s	225	

Surface finish is affected by chip produced with the central insert.

Competitor C

Workpiece: 316SSDrill: $\emptyset 0.875"$, L/D = 3xDCutting speed:Vc = 330 SFMFeed: f = .003 iprMachine: CNC lathe

TUNGORILLTWISTED TOX DRILLS

The new AH725 PVD coated grade now offers all chipbreakers!

AH725 for standard to high speed cutting

Flat and smooth coated surface by adopting "Triple Force Technology"

Dramatically improved resistance to chip welding and insert edge chipping

Newly improved coating layer features great adhesion strength between coating and substrate.

Well-balanced micro alloy substrate is effective for plastic deformation resistance and toughness.

Super flash coating

"Triple Force Technology" improves droplets on the coating surface.

Cutting performance

For Steels / High cutting speed

 Improved chip evacuation by reducing the friction between insert and chip
 Cutting applications extended to high speed machining

Highly efficient machining with newly modified drill body

Chip shape is flat and smooth demonstrating stable surface machining (stainless steels)

Dramatically improved wear resistance by adopting "Triple Force Technology" Improved chipping resistance and stable machining when high speed cutting

Δ

Improved wear resistance in high speed machining of stainless steels
Edge welding is reduced with the AH725
Excellent chipping resistance that is improved by the chip evacuation and characteristics of the new grade

Drill: $\emptyset 0.812"$ in, L/D = 3xDInsert: XPMT06X308R-DSWorkpiece: 304 SSCutting speed: Vc = 650 SFMFeed: f = 0.0032 iprCutting fluid: Water soluble type
(Internal supply)

Stainless steels processing (304 SS) / General cutting speed

Prevention of damage on cutting edge in general cutting area

23 ft DS type AH725 **Competitor A** Center insert Peripheral insert Drill : ø.812", L/D = 3xD Cutting speed : Vc = 400 SFM : *f* = 0.0032 ipr : XPMT06X308R-DS Feed Insert Cutting fluid : Water soluble type Workpiece : 304 SS

Prevents burrs

Tungdrill's new design can achieve excellent chip control which prevent burrs.

Provides more stable cutting performance.

Drill : ø0.812", L/D = 3xD Insert : XPMT06X308R-DS Workpiece : 304 SS

Competitor A

(Internal supply)

5

UNGORILLTWISTED TOX DRILLS

Features of chipbreakers

DJ type

General purpose chipbreaker usable for almost all applications. Features low cutting forces and allows stable drilling.

Chipbreaker for peripheral edge

Deeply formed chip groove creates exceptionally free cutting action and effective chipbreaking.

Chipbreaker for

central edge Relatively shallow chip groove prevents chips from packing.

Low cutting forces and long tool life

Bumps and grooves formed on the rake face reduce the contact area with chips reducing cutting forces and delivering longer tool life.

Strong chipbreaker for

Can forcibly curl thick chips produced in high feeds and causes

them to break into short sections. It also allows for large volume

high feeds

chip removal.

In comparison with conventional inserts, this chipbreaker allows higher feeds and produces superior surface finishes.

Wiper design

Can improve surface finish at normal feeds and minimizes surface degradation at high feeds.

Extraordinarily strengthened corner

Increased land width plus a two step relief angle strengthens the corner section.

Sharp cutting edges Exceptionally free cutting action improves chip control.

Application area of each chipbreaker type

Creates excellent chip control for gum-

Entirely new rake

Can effectively form gummy material chips into short sections.

Strengthened corner

drilling stainless steels.

Strengthened corner geometry

minimizes insert breakage even in

face design

Features and applications of insert grades

NEW First choice: for steels and stainless steels

AH725 PVD coated carbide

Improved wear and fracture resistance combined with new (Ti, AI)N coating and well-balanced substrate.

AH120 PVD coated carbide

For stainless steels

By combining a highly reliable carbide substrate with "Flashcoat", this grade provides superior impact resistance and wear resistance in high-speed machining. Suitable for drilling stainless steels & super alloys.

Application area of each insert

AH740 PVD coated carbide

General purpose grade

By combining an ultra fine grain cemented carbide with "Flash-coat", this grade provides both wear resistance and impact resistance. Can be used for a wide range of applications.

T1015 CVD coated carbide For cast irons

By combining a specially designed hard carbide substrate with newly developed multilayer compound coatings, this grade provides excellent wear resistance in machining cast irons.

6

Insert selection guide												
DJ chipbreaker		NEW		Grad	es			Dimensions (in)				D
	Insert	AH725	AH740	GH73	0 T101	5 T313W	Α	В	Т	ød	rε	Drill Diameters
<u>τε</u> <u>Ξ</u>	XPMT040104R-DJ		•		•		0.169	0.177	0.063	0.091	0.016	ø.500 ~ ø.562
CRASS I I	XPMT050204R-DJ	•	•		•		0.205	0.213	0.094	0.091	0.016	ø.625
	XPMT06X308R-DJ		•				0.236	0.276	0.118	0.098	0.031	ø.687 ~ ø.812
	XPMT07H308R-DJ	•	•		•		0.276	0.323	0.142	0.110	0.031	ø.875 ~ ø1.00
A T	XPMT08T308R-DJ		•		•		0.335	0.390	0.156	0.134	0.031	ø1.062 ~ ø1.25
	XPMT110412R-DJ		•				0.441	0.492	0.187	0.173	0.047	ø1.312 ~ ø1.562
	XPMT150512R-DJ		•				0.591	0.634	0.219	0.217	0.047	ø1.625 ~ ø2.00
DS chipbreaker		NE	V	Grad	es			Dim	ensior	is (in)		
	Insert	AH7	25	AH12	20 (GH730	A	В	Т	ød	re	Drill Diameters
rr °	XPMT040104R-DS	•	1	•	1		0.169	0.177	0.063	0.091	0.016	ø.500 ~ ø.562
	XPMT050204R-DS	•		•			0.205	0.213	0.094	0.091	0.016	ø.625
	XPMT06X308R-DS	•		•			0.236	0.276	0.118	0.098	0.031	ø.687 ~ ø.812
	XPMT07H308R-DS	•		•			0.276	0.323	0.142	0.110	0.031	ø.875 ~ ø1.00
	XPMT08T308R-DS	•		•			0.335	0.390	0.156	0.134	0.031	ø1.062 ~ ø1.25
	XPMT110412R-DS	•		•			0.441	0.492	0.187	0.173	0.047	ø1.312 ~ ø1.562
	XPMT150512R-DS			۲			0.591	0.634	0.219	0.217	0.047	ø1.625 ~ ø2.00
DW chipbreaker	lun n aut	NEW		Grad	es			Dim	ensior	ns (in)		
·	insert	AH72	5 AH7	740	AH120	GH730	Α	В	Т	ød	rε	Drill Diameters
re ÷.	XPMT040104R-DW				•		0.169	0.177	0.063	0.091	0.016	ø.500 ~ ø.562
	XPMT050204R-DW				•		0.205	50.213	0.094	0.091	0.016	ø.625
	XPMT06X308R-DW				•		0.236	60.276	0.118	0.098	0.031	ø.687 ~ ø.812
	XPMT07H308R-DW				•		0.276	6 0.323	0.142	0.110	0.031	ø.875 ~ ø1.00
	XPMT08T308R-DW				•		0.335	50.390	0.156	0.134	0.031	ø1.062 ~ ø1.25
	XPMT110412R-DW				•		0.441	0.492	0.187	0.173	0.047	ø1.312 ~ ø1.562
	XPMT150512R-DW				•		0.591	0.634	0.219	0.217	0.047	ø1.625 ~ ø2.00
								Stoc	ked iter	ns 🔳 :	Discont	inued

Recommended cutting conditions

	F ' 4	TT. I	TT: 1	Tro	ubleshoot	ting	Cutting	с ·		Fee	d (ipr)	
Work materials	choice	feed	speed	Breakage	Wear	Surface finish	speed Vc(SFM)	L/D	ф0.500 - ф0.687	φ0.750 - φ1.00	φ1.062 - φ1.250	φ1.312 - φ2.00
Low carbon steels(C<3)	DS			DW		DW	525 1050	2D,3D	.0015005	.002004	.002004	.002004
JIS SS400,SM490,S25C,etc.	AH725			AH725		AH120	323-1050	4D,5D	.001002	.002004	.002004	.002004
Carbon steels(C<3)	DJ	DW AH725	DS AH120	DW	DJ	DW	250-800	2D,3D	.002005	.002006	.002006	.003007
JIS S45C,S55C,etc.	AH725	AI1725	AIII20	AH725	T1015	AH740	250-800	4D,5D	.002003	.002004	.002005	.003006
Low alloy steels	DS			DW		DW	525-800	2D,3D	.002003	.002005	.002005	.002006
JIS SCM415,etc.	AH725			AH725		AH725	525-800	4D,5D	.002003	.002005	.002005	.002006
Alloy steels	DJ	DW AH725	DS AH120	DW	DJ	DW	250-650	2D,3D	.002005	.002006	.002006	.003007
JIS SCM440,SCr420,etc.	AH725	AI1725	AIII20	AH725	T1015	AH725	250-050	4D,5D	.002003	.002004	.002005	.003006
Stainless steels	DS			DS		DW	225 650	2D,3D	.001003	.002004	.002005	.002005
JIS SUS304,SUS316,etc.	AH725			AH725		AH120	525-050	4D,5D	.001003	.002004	.002005	.002005
Stainless steels	DS			DS		DW	225 725	2D,3D	.0015003	.002004	.002005	.002005
JIS SUS430,SUS416,etc.	AH725			AH725		AH120	325-725	4D,5D	.001003	.002004	.002005	.002005
Stainless steels	DS			DS		DW		2D,3D	.002003	.002003	.002004	.002004
JIS SUS630,etc.	AH725			AH725		AH120	250-400	4D,5D	.002003	.002003	.002004	.002004
Grav cast irons	DJ	DJ		DJ		DW	250 800	2D,3D	.002005	.002006	.002007	.003008
JIS FC250,etc.	T1015	AH/25		AH725		AH740	250-800	4D,5D	.002004	.002005	.002006	.003006
Ductile cast irons	DJ	DJ		DJ		DW	250 (50	2D,3D	.002005	.002006	.002007	.003008
JIS FCD700,etc.	T1015	AH/25		AH725		AH740	250-650	4D,5D	.002004	.002005	.002006	.003006
Aluminum alloys	DW						650 1200	2D,3D	.004006	.006008	.006008	.006010
JIS A2017,ADČ12,etc.	AH725						050-1500	4D,5D	.003005	.005006	.005006	.005008
Super Allows	DS						100 200	2D,3D	.002004	.002004	.002005	.002006
Super Anoys	AH120						100-200	4D,5D	.002004	.002004	.002004	.002005
Titanium	DS						100.200	2D,3D	.002004	.002004	.002004	.002004
1 namulli	AH120						100-200	4D,5D	.002004	.005004	.002003	.002003

•When using the smaller side of the diameter range, the feed rate should be

For work materials of 40 HRC, the feed rate should be set below 50%.

For high-feed machining, apply a feed rate that is approximately 1.5 times the standard feed conditions.
High speed machining means cutting speeds over 500 SFM.
When using DW insert for troubleshooting, use it within the range of standard cutting conditions.

TUNGORILLTWISTED TOX DRILLS

Drills Specification

Please take note that the new TDX type differs from the older TDX type in the total length (L) of drill.

				Dim	nensions	(in)			Clamping Screw	Torx Wrench
Dia.	Drill	Stock	ØDs	ØD	l	l s	L	Insert		
0.500	TDXU-0500-02	•			1.000		3.776			T-6D
0.531	TDXU-0531-02	•	0.750	1 25	1.062	2 000	3.869	XPMT040104R-DJ,DS,DW	CSTB-2	
0.562	TDXU-0562-02	•	0.750	1.25	1.124	2.000	3.963			1-00
0.625	TDXU-0625-02	•			1.250		4.151	XPMT050204R-DJ,DS,DW	CSTB-2L040	
0.687	TDXU-0687-02	•			1.374		4.618			
0.750	TDXU-0750-02	•]		1.500		4.806	XPMT06X308R-DJ,DS,DW	CSTB-2.2R	T-7D
0.812	TDXU-0812-02	•	1 000	1 457	1.624		4.993			
0.875	TDXU-0875-02	•	1.000	1.457	1.750		5.181			
0.937	TDXU-0937-02	•			1.874	2 290	5.368	XPMT07H308R- DJ.DS.DW	CSTB-2.5	T-8D
1.000	TDXU-1000-02	•			2.000	2.200	5.556	-, -,		
1.062	TDXU-1062-02	•			2.124		5.743			
1.125	TDXU-1125-02	•	1.050	1.575	2.250		5.931	XPMT08T308R-	CSTB-3	T-9D
1.187	TDXU-1187-02	•	1.250		2.374		6.118	DJ,DS,DW		
1.250	TDXU-1250-02	•			2.500		6.306			
1.312	TDXU-1312-02	•			2.624		6.901			
1.375	TDXU-1375-02	•			2.750		7.088			
1.437	TDXU-1437-02	•		1.969	2.874		7.276	XPMT110412R-	CSTB-4	T-15D
1.500	TDXU-1500-02	•]		3.000		7.463			
1.562	TDXU-1562-02	•			3.124		7.651			
1.625	TDXU-1625-02	•	1 500		3.250	2 699	7.838			
1.687	TDXU-1687-02	•	1.500		3.374	2.000	8.026			
1.750	TDXU-1750-02	•]		3.500		8.213			
1.812	TDXU-1812-02	•		2.165	3.624		8.401	XPMT150512R- DJ,DS,DW	CSTB-5	T-20D
1.875	TDXU-1875-02	•			3.750		8.588			
1.937	TDXU-1937-02	•			3.874	-	8.776	6		
2.000	TDXU-2000-02	•			4.000		8.963			

L/D = 3xD

Please take note that new TDX type differs old TDX type in the total length (L) of drill

				Dim	nensions	(in)			Clamping Screw	Torx Wrench
Dia.	Drill	Stock	ØDs	ØD	l	l s	L	Insert		
0.500	TDXU-0500-03	•			1.500		4.276			TED
0.531	TDXU-0531-03	•	0.750	1.05	1.593	2 000	4.401	XPMT040104R-DJ,DS,DW	CSTB-2	
0.562	TDXU-0562-03	•	0.750	1.25	1.686	2.000	4.526			1-00
0.625	TDXU-0625-03	•			1.875		4.776	XPMT050204R-DJ,DS,DW	CSTB-2L040	
0.687	TDXU-0687-03	•			2.061		5.306			
0.750	TDXU-0750-03	•]		2.250		5.556	XPMT06X308R-DJ,DS,DW	CSTB-2.2R	T-7D
0.812	TDXU-0812-03	•	1 000	1 457	2.436		5.806			
0.875	TDXU-0875-03	•	1.000	1.457	2.625		6.056			
0.937	TDXU-0937-03	•			2.811	0.000	6.306	DJ.DS.DW	CSTB-2.5	T-8D
1.000	TDXU-1000-03	•			3.000	2.200	6.556			
1.062	TDXU-1062-03	•			3.186		6.806			
1.125	TDXU-1125-03	•	1.050	1.575	3.375		7.056	XPMT08T308R-	COTR A	TOD
1.187	TDXU-1187-03	•	1.250		3.561		7.306	DJ,DS,DW	0318-3	1-90
1.250	TDXU-1250-03	•			3.750		7.556			
1.312	TDXU-1312-03	•			3.936		8.213			
1.375	TDXU-1375-03	•			4.125		8.463			
1.437	TDXU-1437-03	•		1.969	4.311		8.713	XPMT110412R- DJ.DS.DW	CSTB-4	T-15D
1.500	TDXU-1500-03	•	1		4.500		8.963			
1.562	TDXU-1562-03	•	1		4.686]	9.213			
1.625	TDXU-1625-03	•	1 500		4.875	0.600	9.463			
1.687	TDXU-1687-03	•	1.500		5.061	2.000	9.713	-		
1.750	TDXU-1750-03	•	1		5.250		9.963			
1.812	TDXU-1812-03	•		2.165	5.436]	10.213	XPMT150512R-	CSTB-5	T-20D
1.875	TDXU-1875-03	•			5.625]	10.463]		
1.937	TDXU-1937-03	•	1		5.811	-	10.713	3		
2.000	TDXU-2000-03	•	1		6.000	1	10.963	1		

TUNGORILLTWISTED TDX DRILLS

L/D = 4xD

			Dimensio			; (in)			Clamping Screw	Torx Wrench
Dia.	Drill	Stock	ØDs	ØD	l	l s	L	Insert		
0.500	TDXU-0500-04	•			2.000		4.913			
0.531	TDXU-0531-04	•	0.750	1.05	2.124	2 000	5.071	XPMT040104R-DJ,DS,DW	CSTB-2	TED
0.562	TDXU-0562-04	•	0.750	1.25	2.248	2.000	5.189			1-00
0.625	TDXU-0625-04	•			2.500		5.504	XPMT050204R-DJ,DS,DV	CSTB-2L040	
0.687	TDXU-0687-04	•			2.748		6.099			
0.750	TDXU-0750-04	•			3.000		6.414	XPMT06X308R-DJ,DS,DW	CSTB-2.2R	T-7D
0.812	TDXU-0812-04	•	1 000	1 457	3.248		6.729			
0.875	TDXU-0875-04	•	1.000	1.457	3.500		7.004			
0.937	TDXU-0937-04	•			3.748	2 200	7.28	DJ.DS.DW	CSTB-2.5	T-8D
1.000	TDXU-1000-04	•			4.000	2.200	7.595	-, -,		
1.062	TDXU-1062-04	•			4.248		7.91			
1.125	TDXU-1125-04	•	1 250	1.575	4.500		8.225	XPMT08T308R-	CETE 2	
1.187	TDXU-1187-04	•	1.250		4.748		8.5	DJ,DS,DW		1-90
1.250	TDXU-1250-04	•			5.000		8.815			
1.312	TDXU-1312-04	•			5.248		9.577			
1.375	TDXU-1375-04	•			5.500		9.892]		
1.437	TDXU-1437-04	•		1.969	5.748		10.168	DJ,DS,DW	CSTB-4	T-15D
1.500	TDXU-1500-04	•			6.000		10.483]		
1.562	TDXU-1562-04	•			6.248		10.758			
1.625	TDXU-1625-04	•	1 500		6.500	2 688	11.113			
1.687	TDXU-1687-04	•	1.500		6.748	2.000	11.388			
1.750	TDXU-1750-04	•			7.000		11.703			
1.812	TDXU-1812-04	•		2.165	7.248		12.018	DJ.DS.DW	CSTB-5	T-20D
1.875	TDXU-1875-04	•			7.500		12.294	14 19		
1.937	TDXU-1937-04	•			7.748	-	12.609			
2.000	TDXU-2000-04	•			8.000		12.884			

L/D = 5xD

				Din	nensions	(in)			Clamping Screw	Torx Wrench
Dia.	Drill	Stock	ØDs	ØD	l	l s	L	Insert		
0.500	TDXU-0500-05	•			2.500		5.386			
0.531	TDXU-0531-05	•	0.750	1.05	2.655	2 000	5.583	XPMT040104R-DJ,DS,DW	CSTB-2	TED
0.562	TDXU-0562-05	•	0.750	1.20	2.810	2.000	5.78			1-00
0.625	TDXU-0625-05	•]		3.125		6.134	XPMT050204R-DJ,DS,DW	CSTB-2L040	
0.687	TDXU-0687-05	•			3.435		6.808			
0.750	TDXU-0750-05	•]		3.750		7.162	XPMT06X308R-DJ,DS,DW	CSTB-2.2R	T-7D
0.812	TDXU-0812-05	•	1 000	1 457	4.060		7.516			
0.875	TDXU-0875-05	•	1.000	1.457	4.375		7.871			
0.937	TDXU-0937-05	•			4.685	0.000	8.225	XPMT07H308R- DJ.DS.DW	CSTB-2.5	T-8D
1.000	TDXU-1000-05	•	-		5.000	2.200	8.579	,,		
1.062	TDXU-1062-05	•		1.575	5.310		8.973		CSTB-3	
1.125	TDXU-1125-05	•	1.050		5.625		9.367	XPMT08T308R-		TOD
1.187	TDXU-1187-05	•	1.250		5.935		9.721	DJ,DS,DW		1-30
1.250	TDXU-1250-05	•			6.250		10.036			
1.312	TDXU-1312-05	•			6.560		10.876			
1.375	TDXU-1375-05	•			6.875		11.27			
1.437	TDXU-1437-05	•		1.969	7.185		11.585	XPMT110412R- DJ.DS.DW	CSTB-4	T-15D
1.500	TDXU-1500-05	•			7.500		11.979			
1.562	TDXU-1562-05	•]		7.810		12.294			
1.625	TDXU-1625-05	•	1 500		8.125	2 699	12.727			
1.687	TDXU-1687-05	•	1.500		8.435	2.000	13.081			
1.750	TDXU-1750-05	•			8.750		13.436			
1.812	TDXU-1812-05	•		2.165	9.060		13.829	XPMT150512R- DJ.DS.DW	CSTB-5	T-20D
1.875	TDXU-1875-05	•			9.375		14.184			
1.937	TDXU-1937-05	•			9.685	-	14.538	38		
2.000	TDXU-2000-05]		10.000		14.892			

TUNGADRILLTWISTED TDX DRILLS

When aligning the scales, insert the attached wrench into the hole on the periphery of the sleeve and rotate the sleeve. After aligning the scales, secure the fixing bolt "A" positioned closer to the drill. Then, lightly secure the fixing bolt "B" to prevent the sleeve from rotating.

Caution Points:

- The scale should be used only as a guide. Measuring and checking the real finishing diameter is essential. Especially when using for adjusting the cutting edge height on a lathe, the finishing diameter also varies with the adjustment. Check the diameter by trial cutting.
- When using the sleeve in milling, use a side lock type toolholder designed for drilling. Collet type toolholders and milling chucks should not be used for this purpose.
- When heavy vibration develops during maching such as in combining with a long drill exceeding L/D=4 or requiring large amounts of adjusting, reduce the feed rate.
- If the finishing hole diameter is excessively adjusted to the minus (-) direction, the drill body may interfere with the hole to be drilled. Adjusting to the minus direction should be carried out, only when the finishing diameter is larger than the nominal drill diameter, as a means of fine adjustment.

EZ sleeve (Eccentric Sleeves For TDX-type TAC drills) Specifications

Inch ID/Inch OD

	Dimensions (inch)											
Sleeve Cat No.	øD1	øD2	øD3	L1	L2	L3	L4	Adjusting range of finishing diameter	Adjusting range of cutting edge height	Stock		
EZ0.75-1.25	0.75	1.25	1.75	2.00	0.20	1.58	0.375	+0.016~-0.008	+0.008~-0.006			
EZ1.00-1.50	1.00	1.50	2.00	2.50	0.20	1.97	0.375	+0.016~-0.008	+0.008~-0.006			
EZ1.25-2.00	1.25	2.00	2.50	2.70	0.20	1.97	0.375	+0.016~-0.008	+0.008~-0.006			
EZ1.50-2.00	1.50	2.00	2.75	2.90	0.20	1.97	0.375	+0.022~-0.008	+0.012~-0.008			

Metric ID/Metric OD

					Dime	ensions (r	nm)			
Sleeve Cat No.	øD1	øD2	øD3	L1	L2	L3	L4	Adjusting range of finishing diameter	Adjusting range of cutting edge height	Stock
EZ2025L43	20	25	46	43	5	30	4	-0.2~+0.4	-0.15~+0.2	0
EZ2532L48	25	32	51	48	5	40	4	-0.2~+0.4	-0.15~+0.2	0
EZ3240L53	32	40	54	53	5	45	4	-0.2~+0.4	-0.15~+0.2	0
EZ4050L63	40	50	69	63	5	55	4	-0.2~+0.6	-0.2~+0.3	0

Caution

- Ensure that the drilling machine to be used has sufficient rigidity and motor input.
- Before attaching inserts, please remove foreign substances at insert pockets.
- When attaching inserts, please be sure that crevices are not generated between the bottom surface of inserts and insert pocket.
- For work material rotation, please adjust the alignment sufficiently.
- Drilling into stacked plates tends to damage the tool and is not recommended.

Cutting Fluid

- Be sure to supply cutting fluid through the tool.
- A water soluble emulsidiable type cutting fluid should be used.
- Fluid pressure of 145 lb/in² or higher and fluid quantity of 237 oz/min or more are essential.
- For TDX drills of 4D and 5D type, a fluid pressure of 218 lb/in² or higher and fluid quantity of 338 oz/min or more is recommended.

Cautionary points for setting inserts

- Before indexing or changing the inserts, remove chips and other foreign matter from the inserts and insert pockets using an air blast or a wiping cloth.
- Clamping screws should be fastened with a specified wrench enclosed in the package.
- An excessively worn or deformed screw or wrench should be replaced by a new one.

TUNGDRILLTWISTED TDX DRILLS

Comparison of cutting resistance of TDX drill

The charts below show a guideline for cutting forces. Use TDX drills on a machine with ample power and sufficient rigidity.

14

Machining examples

Improves machining efficiency by 70%

Tool drill	: TDX290W32-2 (ø29 mm)
Insert	: XPMT08T308R-DS AH120

Work material	: 4140 SAE
Cutting speed	: <i>V</i> c = 440 SFM
Feed	: <i>f</i> = 0.004 ipr
Drilling depth	: 1.57"
Machine	: NC lathe
Cutting fluid	: Water soluble type

Results

A conventional drill can often stop machine operation due to poor chip control and chip removal. The machining efficiency of the new TDX drill can improve chip control, cutting speed and feed rate by 70%, through the combination of the AH120 grade and the DS chipbreaker.

Machine part

Machine part

Competitor C

Efficiency increase with twisted coolant hole

Tool drill	: TDX200W25-3 (ø20 mm)
Insert	: XPMT06X308R-DJ AH740

Work material	: 1045 SAE
Cutting speed	: <i>V</i> c = 460 SFM
Feed	: <i>f</i> = 0.004 ipr
Drilling depth	: 2.00" Penetrated hole
Machine	: NC lathe
Cutting fluid	: Water soluble type

Results

The conventional drill was optimally used at a cutting speed of Vc = 330 SFM and feed rate of f = 0.002 ipr. The new TDX drill can improve metal removal rates with its twisted coolant hole. As a result, cutting speed is increased to Vc = 460 SFM and the feed rate can be increased to f = 0.004 ipr.

14

Instruction Manual

SAFETY PRECAUTIONS

- TDX-type TUNGDRILL have sharp edges. Special care should be taken in handling them.
- A safety shield and safety glasses should always be used when the machine is in operation to prevent a possible injury caused from flying fragments such as chips and pieces of the broken drill or drill parts.
- When drilling a through-hole in a rotating workpiece, a disc-like portion will be formed at the time of breakthrough and can be projected from between the chuck jaws at a high speed. This disc is extremely dangerous due to having sharp edges. For this reason, a suitable cover must be used to enclose the chuck to assure safety. (Fig. 1)
- Water insoluble cutting fluids are not recommended because their fumes may catch fire.

■ INSTALLING AND REMOVING OF INSERT

- Before installing the insert in the drill body, remove all foreign matter from the insert pocket.
- When clamping and unclamping the insert, the center-line of the wrench should be aligned with the center-line of the screw. Misalignment may result in deformation of the socket of the screw head or the tip of the wrench. (Fig. 2)
- The central insert and peripheral insert have the same geometry. But their installing directions are different.
 Referring to Fig. 3, make sure that both inserts are placed in the right directions.
- When installing the insert, eliminate all play between the insert pocket and the bottom face of the insert.
- Replace the screw before it will be excessively deformed or worn out by the long term of use.

CUTTING FLUID

- Cutting fluid should be supplied through the oil hole of the tool.
- Fluid pressure of 145 psi or greater and fluid quantity of 7 ℓ /min or more are essential.
- Water-soluble, emulsified type cutting fluids are recommended.

CAUTIONARY POINTS IN USE

- New TDX "TUNGDRILL TWISTED" is different from length of body against old TDX-type (i.e. L/D = 2 and 3.) When using New TDX-type, be careful of this point.
- Ensure that the drilling machine to be used has sufficient rigidity and motor output.
- Not recommended for drilling stacked plates.
- Keep overhang of the tool to a minimum.
- Be sure to carry out proper alignment when drilling is to be performed on a rotating workpiece.
- Specifications are subject to change without notice for further improvement.

TUNGDRILLTWIS

Tungaloy America, Inc. 1226A Michael Drive, Wood Dale, IL 60191

1226A Michael Drive, Wood Dale, IL 60191 3726 N. Ventura Dr. Arlington Heights, IL 60004

Inside Sales: Technical Support: Fax: 1-888-554-8394 1-888-554-8391 1-888-554-8392

Distributed By:

Become a fan on facebook

S Follow us on Twitter @tungaloy

Tungaloy Canada

432 Elgin Street, Unit 3, Brantford, Ontario, Canada N3S-7P7 Phone: 519-758-5779, Fax: 519-758-5791

Tungaloy de Mexico S.A.

C Los Arellano 113, Vista Alegre, Aguascalientes, AGS, Mexico 20290 Phone: 011-52-449-929-5410, Fax: 011-52-449-929-5411

